

# Applying personalized genomics to ash trees

Professor Richard Buggs

@RJABuggs













# Broad-leaved trees are experimentally intractable but genomically tractable

|                 | Wheat           | Ash          |
|-----------------|-----------------|--------------|
| Generation time | < 1 year        | > 10 years   |
| Time to harvest | < 1 year        | > 30 years   |
| Space to grow   | 0.1 x 0.1 x 1 m | 5 x 5 x 30 m |
| Inbred lines    | Available       | Unavailable  |
| Genome size     | 17 Gbp          | 0.9 Gbp      |



# **GB** trees: woodland areas and genome sizes

| Species               | Hectares | Genome size (~) |
|-----------------------|----------|-----------------|
| Sitka spruce          | 692,000  | 20 Gbp          |
| Scots pine            | 227,000  | 22 Gbp          |
| Oak                   | 223,000  | 0.9 Gbp         |
| Birch                 | 160,000  | 0.5 Gbp         |
| Lodgepole pine        | 135,000  | 19 Gbp          |
| Ash                   | 129,000  | 0.9 Gbp         |
| Japanese/hybrid larch | 111,000  | 13 Gbp          |

Forestry Statistics 2011 – The Forestry Commission

#### The world needs trees









# **Increasing biotic threats to trees**





#### Alien invasive threats to ash trees



# **Ash Dieback** (*Hymenoscyphus fraxineus*)







# **Emerald Ash Borer** (Agrilus planipennis)







# **Estimating mortality rates of European ash**



A three-parameter logistic model for ash mortality due to ash dieback based on data sets from sites across Europe



Dr Tim Coker



## White ash (USA)





#### Fraxinus americana

http://dx.doi.org/10.2305/IUCN.UK.2017-2.RLTS.T61918430A61918432.en

Scope: Global Language: English Download assessment [A]

| NOT<br>EVALUATED | DATA<br>DEFICIENT | LEAST<br>CONCERN | NEAR<br>THREATENED | VULNERABLE | ENDANGERED | < CRITICALLY > | EXTINCT<br>IN THE WILD | EXTINCT |
|------------------|-------------------|------------------|--------------------|------------|------------|----------------|------------------------|---------|
| NE               | DD                | LC               | NT                 | VU         | EN         | CR             | EW                     | EX      |

**Summary** 

Classification Schemes

Images & External Links

Bibliography

**Full Account** 

#### © The Morton Arboretum Taxonomy [top]



| Kingdom | Phylum       | Class         | Order           | Family   |
|---------|--------------|---------------|-----------------|----------|
| Plantae | Tracheophyta | Magnoliopsida | Scrophulariales | Oleaceae |

Scientific Name: Fraxinus americana L.

Common Name(s): English - White Ash

**Taxonomy** Assessment Information Geographic Range Population **Habitat and Ecology Use and Trade Threats Conservation Actions** 

Translate page into:



OPEN

doi:10.1038/nature20786

# Genome sequence and genetic diversity of European ash trees

Elizabeth S. A. Sollars<sup>1,2</sup>\*, Andrea L. Harper<sup>3</sup>\*, Laura J. Kelly<sup>1</sup>\*, Christine M. Sambles<sup>4</sup>\*, Ricardo H. Ramirez-Gonzalez<sup>5</sup>, David Swarbreck<sup>5</sup>, Gemy Kaithakottil<sup>5</sup>, Endymion D. Cooper<sup>1</sup>, Cristobal Uauy<sup>6</sup>, Lenka Havlickova<sup>3</sup>, Gemma Worswick<sup>1,8</sup>, David J. Studholme<sup>4</sup>, Jasmin Zohren<sup>1</sup>, Deborah L. Salmon<sup>4</sup>, Bernardo J. Clavijo<sup>5</sup>, Yi Li<sup>3</sup>, Zhesi He<sup>3</sup>, Alison Fellgett<sup>3</sup>, Lea Vig McKinney<sup>7</sup>, Lene Rostgaard Nielsen<sup>7</sup>, Gerry C. Douglas<sup>8</sup>, Erik Dahl Kjær<sup>7</sup>, J. Allan Downie<sup>6</sup>, David Boshier<sup>9</sup>, Steve Lee<sup>10</sup>, Jo Clark<sup>11</sup>, Murray Grant<sup>4</sup>†, Ian Bancroft<sup>3</sup>, Mario Caccamo<sup>5,12</sup> & Richard J. A. Buggs<sup>1,13</sup>

Queen Mary University of London.
 QIAGEN Aarhus, Denmark.
 The Earlham Institute, Norwich.
 University of Oxford.
 The Earth Trust, Abingdon.
 Forest Research, Northern Research Station, Roslin.
 University of York.
 University of Exeter.
 University of Copenhagen, Denmark.
 Teagasc, Ireland.
 John Innes Centre, Norwich
 Royal Botanical Gardens, Kew

Sollars

Dr Laura Kelly



Jasmin Zohren



Dr Endymion Cooper





# **Ash Tree Genomes**



| HOME    | OUTREACH                                | DATA       | TOOLS | PUBLICATIONS | CONTACT  | FUNDING |
|---------|-----------------------------------------|------------|-------|--------------|----------|---------|
| IIVIIIL | O O I I I I I I I I I I I I I I I I I I | Dr. tilr t | 1000  | I OBELOTIES  | CONTINUE | TOTAL   |

#### WELCOME TO ASH TREE GENOMES



This website hosts ash genome data to assist scientists in the search for genes that may confer resistance to ash dieback (*Hymenoscyphus fraxinea*) and the emerald ash borer (*Agrilus planipennis*).

Scientists at Queen Mary, University of London (QMUL) in Richard Buggs' lab have sequenced the genome of the European ash tree (*Fraxinus excelsior*), funded by an urgency grant awarded by the Natural Environment Research Council in 2013. The ash genome and associated data have now been published in *Nature*. The paper is available open access here.

The tree sequenced was the result of self-pollination of a tree growing in woodland in Oxfordshire. The controlled self-pollination of the parent tree was carried out by <u>Dr David Boshier</u> of Oxford University. The offspring from this self-pollination are growing at Paradise Wood in Oxfordshire, owned by the Earth Trust, and managed by Jo

https://doi.org/10.1038/s41559-019-1036-6

# Genomic basis of European ash tree resistance to ash dieback fungus

Jonathan J. Stocks<sup>1,2</sup>, Carey L. Metheringham<sup>1,2</sup>, William J. Plumb<sup>1,2,3</sup>, Steve J. Lee<sup>4</sup>, Laura J. Kelly<sup>1,2</sup>, Richard A. Nichols<sup>1</sup> and Richard J. A. Buggs<sup>1,2</sup>\*

Jonathan Stocks



Carey Metheringham



Will Plumb



Dr Laura Kelly





# Forest Research mass screening trials

- Set up in 2012/13
- 14 sites
- 15 provenances
- 153,408 trees





North Burlingham

Frant Place







# **Autumn 2016 results for North Burlingham, Norfolk**





Scientific Reports 7: 16546



LEGEND. Tree Scores: 0 ■ 1 ■ 2 ■ 3 ■ 4 ■ 5 ■ 6 ■ 7 ■







203 SNPs with  $-\log_{10}(p) > 13$ 







#### **Functional Variants:**

1 x missense,

1 x 5' UTR,

2 x downstream

F-box/kelch-repeat protein SKIP6 - Plant F-box genes control many crucial processes including pathogen resistance





#### **Functional Variants:**

- 1 x missense,
- 1 x intron
- 5 x upstream
- 1 x 5' UTR,
- 1 x 3' UTR
- 1 x downstream

#### **Protein CPR-5-like**

CPR5 modulates salicylic acid and the unfolded protein response to manage tradeoffs between plant growth and stress responses (including pathogen attack).





Performance of genomic prediction models for health under ash dieback pressure.

## **Genomic prediction**



Accuracy of assignment of top 20% of trees by Genomic **Estimated Breeding Value** (GEBV) to correct health status







Marden Park Wood





#### Hypotheses:

- (1) Frequencies of alleles at some loci will consistently covary with level of ash dieback damage, so we can predict the ash dieback damage of individual trees
- (2) Many of these loci will be those that were found in our previous study
- (3) Smaller, younger trees will contain a biased subset of the variation present in the adult trees, due to more rapid selection among them by *Hymenoscyphus fraxineus*.

Thus, we hope to detect the action of natural selection in real time in a natural multi-generational population.























Large trees

Small trees







600 trees sequenced at approx. 10X coverage

Illumina by Novogene

4.5M to 213.8M per sample

Mean of 71.5M reads per sample

21,336,502 SNPs found











Large trees

Small trees







Large trees

Small trees



#### **Postdocs**



Dr Laura Kelly







Dr Endymion Cooper



Department for Environment Food & Rural Affairs

Dr Tim Coker

#### PhD students



Jonathan Stocks



Carey Metheringham



#### Collaborators

Richard Nichols (QMUL)
Steve Lee (Forest Research
Justin Moat (Kew)

Jasmin Zohren



Will Plumb







# Funding:





Department for Environment Food & Rural Affairs

